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Abstract 
Interacting agents that interleave planning and execu- 
tion must reach consensus on their commitments to 
each other. For domains with varying degrees of in- 
teraction and different constraints on communication 
and computation, agents will require different coordina- 
tion protocols in order to efficiently achieve their goals. 
ShAC (Shared Activity Coordination) is a framework 
for designing coordination protocols and an algorithm 
for continually coordinating agents using these proto- 
cols during execution. We show how a variety of pro- 
tocols can be constructed using this framework and de- 
scribe how ShAC coordinates two rovers and an orbiter 
in a simulated Mars scenario. 

Introduction 
Agents based on behavioral systems or social laws (Shoham 
& Tennenholtz 1992) can make short-sighted coordination 
decisions, leading to irreversible effects that prevent agents 
from reaching their longer-term goals. Planning is com- 
monly used to project and resolve conflicts with future ac- 
tivities. When interleaving planning and execution, an agent 
must be able to adjust its planned activities as it gathers in- 
formation about the environment and encounters unexpected 
events. Interacting agents must coordinate these adjustments 
in the context of commitments with each other. The work 
presented here addresses how these agents can interleave 
coordination and execution. The ultimate goal of this re- 
search is to enable interacting agents to autonomously ad- 
just their coordination protocols with respect to unexpected 
events and changes in constraints on communication and 
computation so that the agents can most efficiently achieve 
their goals. This paper presents a framework for designing 
coordination protocols and an algorithm for continually co- 
ordinating agents using these protocols during execution. 

Our approach, called Shared Activity Coordination 
(ShAC), provides a general algorithm for interleaving plan- 
ning and the exchange of plan information as shared activ- 
ities. Agents coordinate their plans by establishing consen- 
sus on the parameters of shared activities. Figure 1 displays 
this consensus on parameters as equals constraints between 
agents’ local views of the shared activity. The vertical box 
over each planner’s schedule represents a commit window 
that moves along with the current time. Activities in this 
window must be passed on to the execution system, which 
sends state updates to the planner. Consensus must be es- 

Figure 1: Activities shared among continual planners 

tablished for shared activities before this window to avoid 
violated commitments between agents. Consensus is hard to 
establish if all agents sharing an activity modify its param- 
eters at the same time. Thus, agents participate in different 
coordination roles that specify which agent has control of 
the activity. 

ShAC’s ability to continually coordinate depends on in- 
terleaved planning and execution. As a result, the planner 
must be able to respond to execution failures and state up- 
dates from the execution system. Our implementation inter- 
faces with one such continual planning system, CASPER 
(Continuous Activity Scheduling Planning Execution and 
Replanning) (Chien et al. 2000). Instead of batch-planning 
in episodes, CASPER continually adapts near and long- 
term activities while re-projecting state and resource profiles 
based on updates from the execution system. 

First we describe the shared activity model, the ShAC al- 
gorithm, and its interface to the planner. Then we specify 
some generic roles and protocols using the ShAC framework 
that build on prior coordination mechanisms. These mech- 
anisms include a mapping of distributed constraint satisfac- 
tion and argumentation approaches to distributed planning. 
Then we describe how our current implementation of ShAC 
is used to coordinate the communication of two rovers and 
an orbiter in a simulated Mars scenario. We follow with 
future research needs revealed in this scenario and compar- 
isons to related work. 

ShAC 
ShAC is implemented as a module that commands the plan- 
ner of each agent and handles communication with other 
agents. ShAC keeps track of shared activities and constraints 
on these activities. 
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Shared Activities 
Consider an example of a shared communication activity. 
One agent serves the role of a sender and another the role of 
a receiver. Shared parameters could specify the start time, 
duration, transfer rate, and data size of the activity. The 
data size is depleted from the sender’s memory resource but 
added to the receiver’s memory. The agents could have sep- 
arate power usages for transmitting and receiving. Planning 
decisions affect shared activities by altering the values of pa- 
rameters. For example, a planner can reschedule an activity 
by changing its start-time parameter. 

A shared activity is a tuple ( ident i f ier ,  parameters, 
agentroles, protocols, decomposition). The parameters 
are the shared variables and current values over which the 
agents must reach consensus. Our implementation defines 
boolean, integer, floating point, and string types. Agent 
roles are the local activities assigned to each agent that cor- 
respond to the shared activity. These roles can have differ- 
ent conditions and effects as specified by the local planning 
model. The shared parameters map to local parameters in 
the role activity. Protocols are the mechanisms assigned to 
each agent that allow them to 

change constraints on the shared activity, 
change the set of agents assigned to the activity, 
communicate changes to the activity and its constraints to 

handle constraints received from other agents, and 
change roles and protocols for each agent. 

Multiple protocols can be defined for a shared activity to 
combine their capabilities. Constraints will be described in 
the next section, and a variety of protocols will be defined in 
the Protocols section. 

The decomposition is the set of subactivities in the de- 
composition of the agent’s local role activity that all agents 
share. This is needed to establish consensus on shared sub- 
activity choices that may be selected or eliminated from the 
set of subactivities. 

Constraints 
Constraints are created by agents’ protocols to restrict sets 
of values for parameters (parameter constraint) and permis- 
sions for manipulating the parameters, changing constraints 
on the parameters, and scheduling shared activities (permis- 
sion constraint). These constraints restrict the privileges 
(or responsibilities) of agents in making coordinated plan- 
ning decisions. By communicating constraints, protocols 
can come to agreement on the scheduling of an activity with- 
out sharing all details of their local plans. By only permitting 
one agent to have planning capabilities at a time, a protocol 
can avoid thrashing among agents that try to resolve shared 
activity conflicts in different ways. 

A parameter constraint is a tuple (agent, parameter, 
value set). The agent denotes who created the constraint. 
Some protocols differentiate their treatment of constraints 
based on the agent that created them. For example, the asyn- 
chronous weak commitment algorithm prioritizes agents so 
that lower-priority agents only conform to higher-priority 
agent constraints (Yokoo & Hirayama 1998). Agents can 
add to their constraints on a parameter, replace constraints, 

other agents, 

or cancel them. A string parameter constraint, for exam- 
ple, can restrict a parameter to a specific set of strings. An 
integer or floating point variable constraint is a set of dis- 
joint ranges of numbers. As mentioned before, scheduling 
constraints can be represented as constraints on a start time 
integer parameter.’ 

Permissions constraints determine how an agent’s planner 
is allowed to manipulate shared activities. The following 
permissions are currently defined for ShAC: 

parameters - change parameter values 
- move - set start time 
- duration - change duration of task 
- delete - remove from plan 
- choose decomposition - select shared subactivity of an 

or activity 
add - add to plan2 
constrain - send constraints to other agents 
Parameter permissions can be specified for each param- 

eter separately. The permissions categorized under the pa- 
rameters permission are potentially special parameters that 
all activities have. A protocol can change permissions of 
shared activities for any agent during coordination. 

Coordination Algorithm 
Figure gives a general specification of the ShAC algorithm. 
ShAC is implemented separate from the planner, so steps 1 
through 4 are handled by the planner through an interface 
to ShAC. Step 5 invokes the protocols that potentially make 
changes to refocus coordination on resolving shared activity 
conflicts and improving plan utility. Shared activity changes 
and permission constraints are automatically sent to sharing 
agents, and the protocol determines which parameter con- 
straints are sent in step 6.  Likewise in step 7, shared activ- 
ity and permission constraint changes are automatically up- 
dated from other agents, and the protocol handles changes 
in parameter constraints. 

Note that on each pass of this loop, there may be no con- 
flicts to warrant altering the plan, no state updates to revise 
the projection, no activities to release, or no messages or 
other ShAC information to act upon. This algorithm could 
be interpreted to run all steps in parallel with each other. 
Each separate parallel step could be looping at a different 
rate, either naturally or as configured. The best way to con- 
figure this will depend on the domain and the agents’ sensing 
and computation capabilities. Although a domain designer 
can make guesses and experiment through simulation, future 
work is needed to understand how this configuration should 
be done. 

Ignoring coordination, a continuous planner must deter- 
mine when it is appropriate to release activities to the exe- 
cution system. In some cases, an activity involved in a con- 
flict may either be released (requiring the planner to recover 

‘This is an influence of interfacing ShAC to the CASPER plan- 
ning system, which grounds the timing of all activities (Chien er 
al. 2000). ShAC would need a new representation to handle partial 
order constraints on activities. 

‘This permission applies to a class of shared activities (i.e. an 
agent may be permitted to instantiate a shared activity of a particu- 
lar class). 



Given: a plan with multiple activities, a projection of 
plan into the future, and a set of sharedadiui t ies  with 
constraints. 

1. Revise projection using the currently perceived state 

2. Alter plan and projection according to constraints. 

3. Release relevant near-term activities of plan to the 
real-time execution system. 

4. Detect sharedactiuities failed to schedule in plan, 
and generate parameter constraints representing 
consistent value sets. 

5. For each shared activity in sharedactivities, apply 
each associated protocol to modify the shared activity 
and constraints. 

6. Communicate changes in sharedactivities and 
constraints. 

7. Update sharedactivities and constraints based on 
received communications. 

8. Go to 1. 

and any newly added goal activities. 

Figure 2: Shared activity coordination algorithm 

from potential failures) or postponed (to allow the planner 
to recover before a failure occurs). CASPER keeps a com- 
mit window (an interval between the current time and some 
point in the near future) within which activities cannot be 
modified and passes these activities to the execution system. 

This interaction with the execution system becomes more 
complicated when agents share tasks. ShAC must make sure 
that any shared activity is released by all agents with consen- 
sus on the start time and other parameters of the task. Ide- 
ally the agents should establish consensus before the commit 
window. If they cannot, then there should be a simple pro- 
tocol that allows them to quickly establish consensus (e.g. 
use the task information of the highest priority agent sharing 
the task and having modlfication permissions), and the task 
must be modified within the commit window. ShAC avoids 
changes in the commit window by keeping a consensus win- 
dow that extends from the commit window forward by some 
period specific for the activity. As time moves forward, the 
consensus window extends forward. When a shared activity 
moves into the window, the agents switch to the simple con- 
sensus protocol to try and reach consensus before moving 
into the commit window. 

ShAC requires several capabilities from the planning sys- 
tem to which it interfaces. If the system is not a continual 
planner, and coordination is to be done in batch before exe- 
cution, then steps 1 and 3 are not necessary in the algorithm 
description. In this case, ShAC requires the following capa- 
bilities of the planner: 

grounds start times and durations of activities3, 
0 add new activities received from other planners, 
0 update parameters of activities changed by otherplanners, 

'This is because ShAC has not yet been extended to handle flex- 
ible or partial order time constraints. 

0 enforce constraints during planning, and 
0 detect activities it failed to schedule and generate the cor- 

responding parameter constraints. 
For continual coordination during execution, the planner 

must additionally be able to 
integrate state updates from the execution system, 
project changes in the current plan, and 

0 issue near-term activities to the execution system. 
Probably the most stringent requirement is that the plan- 

ner be able to alter its plan based on state updates and shared 
activities that other agents modify. Being able to handle 
unexpected events, however, is a necessary property for in- 
terleaving planning and execution. Iterative repair planners 
focus on this capability and make good candidates for this 
coordination architecture. CASPER is one such planner and 
provides all of the capabilities we list above (Chien et al. 
2000). 

Protocols 
In general, protocols determine when to communicate, what 
to communicate, and how to process received communica- 
tion. During each iteration of the loop of the coordination 
algorithm (of the previous section), the protocol determines 
what to communicate and how to process communication 
as described in the algorithm and the Shared Activities sec- 
tion. A protocol must specify the following procedures to 
be called during steps 5, 6, and 7 of the ShAC coordination 
algorithm for the activity to which it is assigned: 
1. modify permissions of the sharing agents (ShAC step 5) 
2. adadelete agents sharing the activity (ShAC step 5) 
3. change roleslprotocols for each agent (ShAC step 5) 
4. send some subset of parameter constraints to each sharing 

agent (ShAC step 6) 
5. process constraints received from other agents (ShAC step 

7) 
We will define protocols according to these five methods. 

If a protocol does nothing for all of these procedures, the 
ShAC algorithm still has several capabilities. An initial as- 
signment of agents and their permissions to shared activities 
can provide the following capabilities. A domain modeler 
uses a language for defining shared activities to specify these 
initial assignments to provide a mix of capabilities resulting 
in basic protocols upon which others can be built.4 
joint intention A shared activity by itself represents a joint 

intention among the agents that share it. 
mutual belief Parameters or state assertions of shared ac- 

tivities can be updated by sharing agents to establish con- 
sensus over shared information. 

resource sharing Sharing agents can have identical condi- 
tions and effects on shared states or resources. 

activdpassive Some sharing agents can have active roles 
with execution primitives while others have passive roles 
without execution primitives. 
4The modeling language is outside the scope of this paper but 

is inspired by team-oriented programming for STEAM (Pynadath 
er al. 1999; Tambe 1997). 



mastedslave A master agent can have permission to sched- 
ule/modify an activity that a slave[s] (which has no per- 
missions) must plan around. 
The following sections describe protocols that build on 

the above capabilities by implementing one or more of the 
five protocol methods. 

Argumentation 
Argumentation is a technique for negotiating joint beliefs or 
intentions (Kraus, Sycara, & Evanchik 1998). Commonly, 
one agent makes a proposal to others with justifications. The 
others evaluate the argument and either accept it or counter- 
propose with added justifications. This technique has been 
applied to teamwork negotiation research to form teams, re- 
organize teams, and resolve conflicts over members’ beliefs 
(Tambe & Jung 1999). This technique can be used in coor- 
dinated planning to establish consensus on shared activities. 

A shared activity and associated parameter values are the 
proposal or counterproposal. Justifications can be given as 
parameter constraints (not necessarily on the same parame- 
ters proposed). Line 4 of the coordination algorithm deter- 
mines whether the enforced constraints of other agents are 
feasible and generates potential constraints for counterpro- 
posals. Protocol method 4 must be implemented to initiate 
counterproposals with constraint justifications. What con- 
straints are generated is domain dependent since the argu- 
ment for a proposal is domain dependent. Protocol method 
5 must also be implemented to evaluate the constraints and 
enforce them in the planner. An evaluation may accept the 
proposal, enforce the constraints, or reject the proposal by 
signalling protocol method 4 to counterpropose without re- 
planning. 

As an example, one agent can propose an activity with 
a particular start time and add justifications in the form of 
all intervals within which the shared activity can be sched- 
uled. Other agents can replan to accomodate the proposal 
and counterpropose with their own interval restrictions if re- 
planning is unsuccessful. If the agents cannot establish con- 
sensus before the consensus window, a higher ranking agent 
can select a time that benefits most of the agents. Of course, 
there are many variations on just this example. Agents may 
be restricted because they are slaves or do not have con- 
straint permissions to counterpropose. 

Delegation 
Delegation is a mechanism where an agent in a passive dele- 
gator role assigns and reassigns activities to different subsets 
of agents in active subordinate roles. The delegator’s proto- 
col only needs to implement protocol method 2 to choose 
the subordinates that will perform the task. This protocol 
can be simply varied by giving agents different master or 
slave roles. 

Asynchronous Weak-Commitment 
Multi-asynchronous weak commitment is a distributed con- 
straint satisfaction algorithm that enables agents, each with 
a set of variables, to satisfy constraints between variables 
across and within agents (Yokoo & Hirayama 1998). Agents 
are prioritized, and their variables each initially have a zero 
priority. The values of lower priority variables are modified 
to satisfy constraints with values chosen for higher priority 

variables (with agent priorities as a tie breaker). If there is no 
value that satisfies the constraints, then the goveming agent 
selects a value that minimizes violations with lower priority 
variables and raises the priority of the variable to the highest 
priority of the variables with which it has constraints plus 
one, making the variable the highest ranking with its neigh- 
bors. The failing agent also sends a no-good to its neighbors, 
communicating the values of the subset of variables making 
the variable unassignable. 

This protocol can be adapted for planning agents. The 
variables are shared activity parameters. The constraints 
are equals relations among agents sharing the activities. A 
agent’s protocol must keep track of a priority of the shared 
activity and those of the other sharing agents (as well as the 
agents’ priorities). These priorities can be parameters of the 
shared activity. A no-good message is a set of parameter 
constraints generated by step 4 of the coordination algo- 
rithm. The agent’s protocol implements method 1 to give 
itself permission to modify the shared activity only if there 
are other sharing agents with a higher rank for the activity. 
Protocol method 5 enforces only the parameter constraints 
from agents with higher ranks for the activity. Whenever 
parameter constraints are generated by the planner because 
conflicts caused by the activity cannot be resolved, the prot- 
col updates the priority of the activity to one greater than 
that of the other agents, and sends the priority update and 
parameter constraints (as no-goods) to the sharing agents in 
protocol method 4. 

Constraint-Based Conflict Resolution 
For this protocol, the agents initially have no permissions 
to modify a proposed shared activity. They broadcast any 
parameter constraints to the sharing agents as the planner 
schedules local activities around the shared activity while 
trying to meet others’ constraints as possible. After some 
time period, or once the agents have converged on a set of 
constraints (not guaranteed), the agents switch to another 
protocol potentially reinstating permissions and negotiate fi- 
nal parameter values or delete the activity. Protocol method 
3 must be implemented to switch protocols. 

Round-Robin 
A round-robin approach to establishing consensus on a 
shared activity involves rotating a master role by changing 
permission Constraints. Only one agent may modify the ac- 
tivity at a time and once finished, the agent can tum off its 
own permissions and turn them on for another agent (while 
sending out the update). Only protocol method 1 need be 
implemented to switch permissions-role switching is not 
necessary. 

Centralized Conflict Delegator 
Here, a single agent served in a passive delegator role for a 
set of shared activities. The delegator models all shared re- 
sources and, thus, keeps track of all conflicts for a group 
of active Subordinates. Subordinates do not share activi- 
ties with each other. This boss delegates conflicts to differ- 
ent agents by delegating tasks involved in conflicts to dif- 
ferent subordinates and also sending the subordinates the 
corresponding parameter constraints it generates indirectly 
from the activities it shares with other subordinates. Proto- 
col method 2 is implemented to ensure that agents are not 



modifying the same activities or working on the same con- 
flicts in order to avoid race conditions. Optionally, a sub- 
ordinate can report its own conflicts when it fails to resolve 
conflicts, and the delegator will re-delegate the conflict by 
reassigning subordinates to activities using method 2. 

Application to Mars Scenario 
Now we describe how ShAC is applied to a simulated sce- 
nario involving two Mars Exploration Rovers (MERs) and 
a Mars Odyssey orbiter. Different masterlslave and ac- 
tivelpassive roles are defined using permission constraints 
for the shared activities to implement a basic protocol for co- 
ordinating communication to and from Earth. We will apply 
some of the previously defined, more sophisticated protocols 
to thls domain in our future work. 

The MERs (MER A and MER B) and Odyssey can com- 
municate with Earth directly, but the MERs can option- 
ally route data through Odyssey, which communicates with 
Earth at a higher bandwidth. The rovers need daily commu- 
nication with ground operations to receive new goals. The 
rovers will often fail to traverse to a new target location and 
cannot proceed until new instructions come from ground op- 
erations. In this scenario both MERs must negotiate with 
Odyssey to determine how to most quickly get a response 
from ground after sending an image of the surrounding area. 

Each MER has a communication state shared with 
Odyssey that tracks when the image is generated, when it 
gets to Earth, and when the response from ground opera- 
tions arrives to the rover. Shared activities for changing the 
state are shown for different routing options in Figure 3. The 
rover's activity for generating an image from its panoramic 
camera changes the state to request to communicate its 
need to downlink and receive an uplink. Activities for send- 
ing the image to Earth (either directly or through Odyssey), 
change the state to a wait for uplink state to indicate 
that the rover will then be waiting for the uplink. Ground op- 
erations needs a period of time to generate new commands 
for the uplink, so if the uplink is received by Odyssey, the 
state changes to received to indicate that now the rover 
can get the uplink from Odyssey. Once the rover receives 
the uplink, the state changes back to the normal no pend- 
ing request state. Rover tasks (such as a traverse) need 
the uplinked data before executing, so it places a local con- 
straint that shared state be no pending request dur- 
ing its scheduled interval. There are no shared resources 
although communication requests from a MER have effects 
on many local resources of both the MER and Odyssey. All 
of the shared activities have active master and passive slave 
roles. MER and Odyssey both take the master role for activ- 
ities labeled for them in Figure 3. 

CASPER planners for each of the MERs and Odyssey 
first build their three-day plans separately to optimize sci- 
ence data retum, resolving any local constraints on memory, 
power, battery energy, etc. The three-day schedules consti- 
tute over 600 tasks for each MER and over 1400 for Odyssey 
with 30 statelresource variables for each MER and 22 for 
Odyssey. 

When coordination begins, the planners send their com- 
munication requests to the other planners. Before these up- 
dates are received, the initial views of the shared uplink sta- 
tus are shown in Figure 4. The MERs begin with conflicts 
with their traverse tasks because the uplink has not yet been 
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Figure 3: Downlinkluplink states for a rover 
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Figure 4: Downlinkhplink shared state for MER A. From 
top to bottom, Odyssey's initial view, MER A's initial view, 
and the common view after coordination. 

received from Earth. The coordination algorithm commands 
the planners to repetitively process shared task updates, re- 
plan to resolve conflicts by recomputing the shared state and 
modifying scientific measurement operations to adjust for 
the increased power and memory needs, and send task up- 
dates. After a minute and a half, MER A, B, and Odyssey 
agree on routing the downlink and uplink through Odyssey 
to get the uplinked commands in time for the traversal on 
different days5 The resulting shared state is shown at the 
bottom of Figure 4. The ASPENS reach consensus that co- 
ordination is complete and sleep while waiting for task up- 
dates. 

Then we triggered an anomaly in MER A's plan causing 
it to cancel its first day's tasks and shift the entire sched- 
ule forward a day. Before sending the updated shared tasks, 
replanning was issued to resolve local constraints to avoid 
propagating inconsistent state information to Odyssey. All 
conflicts were resolved in a few seconds except the traverse 

50dyssey's planner ran on a SuaBlade 1000, and the MERs ran 
on a Sparc Ultra 60 and 80. 



conflicts with a w a i t  state. Then MER A sends a task up- 
date to restart coordination. Coordination completes in less 
than a minute with data again being routed through Odyssey. 

While we have only experimented with simple protocols, 
this application of ShAC to the Mars scenario shows how 
planners can coordinate during execution while making min- 
imal concessions to ideal plans and responding to unex- 
pected events. In the next section, we discuss how ShAC 
builds on related work and discuss new research challenges 
for decentralized, coordinated planning. 

Discussion and Related Work 
Conflicts among a group of agents can be avoided by re- 
ducing or eliminating interactions by localizing plan effects 
to particular agents (Lansky 1990), and by merging the in- 
dividual plans of agents by introducing synchronization ac- 
tions (Georgeff 1983). In fact, planning and merging can 
be interleaved (Ephrati & Rosenschein 1994). Earlier work 
studied interleaved planning and merging and decomposi- 
tion in a distributed version of the NOAH planner (Corkill 
1979) that focused on distributed problem solving. More 
recent research builds on these techniques by formalizing 
and reasoning about the plans of multiple agents at multi- 
ple levels of abstraction to localize interactions and prune 
unfruitful spaces during the search for coordinated global 
plans (Clement & Durfee 2000). While this is a central- 
ized approach, work is needed to apply these techniques that 
leverage abstraction in a decentralized framework to reduce 
communication and computation during coordination. Ab- 
stract plan information can even automate the discovery of 
agent relationships that our approach pushes off on the do- 
main modeler. 

DSIPE (desJardins & Wolverton 1999) employs a central- 
ized plan merging strategy for distributed planners for col- 
laborative problem solving using human decision support. 
Like our approach, local and global views of planning prob- 
lem help the planners coordinate the elaboration and repair 
of their plans. DSIPE provides insight into human involve- 
ment in the planning process as well as automatic informa- 
tion .filtering for isolating necessary information to share. 
While our approach relies on the domain modeler to spec- 
ify up front what information will be shared, ShAC supports 
a fully decentralized framework and focuses on interleaved 
coordination and execution. 

In many ways t h s  work is following the Generalized Par- 
tial Global Planning approach to using a mix of coordina- 
tion protocols tailored for the domain (Decker 1995). ShAC 
offers an altemative framework for separating implementa- 
tion of these mechanisms from the planning algorithms em- 
ployed by specific agents. Unlike GPGP, ShAC provides a 
modular framework for combining lower-level mechanisms 
to create higher-level roles and protocols. Our future work 
will build on GPGP’s evaluations of mechanism variations to 
better understand how agents should coordinate for classes 
of domains varying in agent interaction, communication 
constraints, and computation limitations. 

Grosz’s shared plans model of collaboration presents a 
theory for modeling multiagent belief and intention (Grosz 
& Kraus 1996). ShAC’s model and manipulation of shared 
activities provides basic mechanisms for agents to commu- 
nicate and establish beliefs, intentions, and goals for itself 
or a group. Using ShAC to reason about the mental states 

of agents, the shared plans model and work based on BDI 
(belief-intention-desire) models of agents (Rao & Georgeff 
1995) can be exploited in ShAC. 

Finally, TEAMCORE provides a robust framework for 
developing and executing team plans (Tambe 1997; Pyna- 
dath et al. 1999). This work also offers a decision-theoretic 
approach to reducing communication within a collaborative 
framework. Research is needed to investigate the integration 
of coordinated planning with robust coordinated execution. 

An assumption commonly made in multiagent research is 
that agents will be able to communicate at all times reliably. 
In the Mars scenario, the spacecraft communicate with each 
other in varying time windows and frequencies, and the two 
MERs can never directly talk to each other. Establishing 
consensus on beliefs and intentions is impossible without 
certain communication guarantees (Mullender 1995). Un- 
derstanding the communication pattems that make consen- 
sus possible and the overhead for establishing consensus is 
critical for multiagent research. 

Conclusion 
We have introduced shared activity coordination as an ap- 
proach to designing role-based coordination mechanisms. 
ShAC provides several coordination capabilities upon which 
we have specified several higher-level coordination proto- 
cols, including a mapping of a distributed constraint satis- 
faction algorithm into distributed planning. We have also de- 
scribed an algorithm for continually coordinating planning 
agents during execution using these protocols. While our 
future work is aimed at evaluating the benefits of these pro- 
tocols for different classes of multiagent domains, we vali- 
date our approach in coordinating three simulated spacecraft 
in the presence of an unexpected event. 
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